Nd:YAG 晶体中几种缺陷 对激光性能的影响

张守都 张珊珊 周良智

(中国科学院上海光机所)

提要: 实验研究了 Nd:YAG 晶体中的残余应力、小晶面和散射颗粒等缺陷对 晶体的光学性质和连续激光性能的影响。

Influence of defects in Nd: YAG crystals on laser performances

Zhang Shoudu Zhang Shanshan Zhou Liangzhi

(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

Abstract: Influence of defects, such as residual stress, facet and scattering particles in Nd:YAG crystals on the optical properties of crystal and CW laser performances were investigated experimentally.

YAG 晶体中常见的小晶面、色心、散射 颗粒、位错、应力和生长条纹等缺陷的研究, 已有不少报道^[1,2]。在这里,我们仅讨论其中 几种缺陷对晶体光学性质和连续激光性能的 一些影响。

晶体中残余应力对连续激光 运转的影响

Nd:YAG 晶体在生长过程中由于温度 梯度和温度波动而产生了残余应力。

在这里,我们将避开繁杂的计算和测量 而对连续运转下体内残余应力和感应的热应 力进行比较,从而估算出残余应力的上限值。 因为,在连续运转中,泵浦过程所感应的应变 (热应变)和生长过程中"凝入"的应变(残余 应变)都将使激光相互作用增强,产生光学相 位的畸变,使折射率变化。利用折射率的变 化与正交偏光下等色线(等光程线)的条纹数 之间的关系,可以导出热应力(包括残余应 力)最大值 σ_{max}的简单表达式^[3]

$$\sigma_{\max} = P \frac{L}{N} \tag{1}$$

式中 P 是棒轴方向的函数, L 是棒长, N 是 等色线条纹数。

我们在实验中观察到*,不管晶体中原有的残余应力分布如何杂乱,随着泵浦功率的 增加,当正交偏光图形中出现第一条等色线 时,残余应力立即消失。按公式(1),可以估 算出此时的热应力最大值,这就是棒中残余 应力的上限。一根棒长为7厘米的[111]棒, 按(1)式估算的最大热应力为

$$\sigma_{\max} = 520 \times \frac{1}{7} \approx 74$$
公斤/厘米²

收稿日期: 1979年9月28日。

* 实验装置见文献[3]中的图 5。

随着泵浦功率增加,等色线条纹数亦增 多,这是由于热应力增高面引起光畸变增大 的结果。因此,我们可以说,在较高泵浦功率 的连续运转中,泵浦过程所感应的热应力远 较残余应力为大,即残余应力对激光性能的 影响较热应力要小得多。

小晶面和散射颗粒对 激光性能的影响

当激光棒中存在小晶面和大的散射颗粒 时,即使在很高的泵浦功率下(即很大的热应 力下),也很难改变这一区域中由缺陷所产生 的正交干涉花样(图1),图1(a)和(b)分别是 未加泵浦功率时由散射颗粒和小晶面所产生 的干涉图形。图1(c)和(d)分别是图1(a)和 (b)的同一样品在加4千瓦泵浦功率下产生 的干涉图形。由图1可以看出,这二种缺陷所 形成的干涉图形并不随热应力增大而消失, 尽管图1(a)和(b)中右半部的残余应力早 在出现第一条等色线时就消失了。这表明这 类缺陷产生的应力是相当大的。

可以这样来估算这类缺陷所产生的应力

(a) 含有大量散射颗粒 的[211]棒

(b) 含小晶面 的[213]棒

(c) 与[a]同一根棒
(d) 与[b]同一根棒
图1 含有散射颗粒和小晶面的正交干涉图
(a)、(b) 为泵浦前的图形; (c)、(d) 为4千瓦
泵浦功率下的图形

最小值。对一根长90毫米的有散射颗粒的 [211]棒,在加4千瓦功率时,出现4条等色 线,这时的最大热应力为

 $\sigma_{\max} = 470 \times \frac{4}{9} \approx 209$ 公斤/厘米²

这个热应力的最大值就是此类缺陷的应力的 最小值。

根据文献[3],对不同取向的激光棒,由 于热应力的作用而产生破坏,存在不同的 N/L值。对[211]棒,破坏极限 $\frac{N}{L} \simeq 1.18$ 。一 般质量的晶体, $\frac{N}{L}$ 值皆小于 0.5,远低于破坏 极限。实验中发现,产生破坏的激光棒,往往 含有散射颗粒和小晶面。棒中含有这二种缺 陷的区域内,局部应力相当大,在该区域内 <u>N</u>值往往超过上述极限,使晶体破裂。

小晶面区域内 Nd³⁺ 的浓度较周围区域 高 20% 左右⁽³⁾,而晶体中的散射颗粒主要是 由 Nd³⁺ 的组分过冷、铱的包裹物或其它杂质 富集构成⁽⁵⁾。杂质分布的不均匀产生化学应 力,其影响很难消除。高温退火可以大大改 善生长中由于陡的热梯度而产生的残余应 力,但却很难改善小晶面区域中的化学应力。 由图 2 可以看到, 经 1900°C 高温退火后,右 边的应力已大大减少,而左端的小晶面区域 应力却无太大改善。

消光比测试表明,小晶面区域的消光比 比周围区域要低得多。经1900°C高温退火 以后,小晶面区域的消光比无太大改善,而周 围区域则大有提高。这也是因为小晶面区域 的化学应力不仅很大,而且难以消除的缘故。 表1是高温退火前、后的消光比。从表1看 到,退火以后,小晶面区域的消光比稍有提高,实际上,这是由于该区域内的残余应力已 基本消除了的缘故,而化学应力并无改善,小 晶面区域的大小和形状也不改变。

表1 退火前、后消光比的变化

inte printit	小晶面区域	小晶面附近	无小晶面区域				
退火前	3.35	6.20	6.60				
退火后	4.22	12.80	17.69				

小晶面区域与周围区域消光比有较大差 异,说明该区域内双折射现象非常明显。这 一点,也可以从沙敏干涉图(图3(a))和正交 偏光干涉图(图3(b))看出,图3(c)是激光近 场干涉图。由图3(a)、(b)、(c)中可以看到, 三者之间有很好的对应关系。它说明,小晶 面虽然是棒中折射率变化最大的区域,有很 大的应力双折射,但高的Nd³⁺浓度仍起主导 作用。因此,在近场烧斑上表现出它的阈值 最低,将首先产生激光振荡,并且输出最强。

上述种种光学不均匀性, 可等价地看作

是光学性能完全均匀而表面不平的谐振腔。 即将光程差 $\Delta(r) = [n(r) - n'(r)]L$ 变换成 $\Delta(r) = [L(r) - L'(r)]n_{o}$ 谐振腔表面曲率不同 的局部,对应于半径不同的凹、凸透镜。因此, 可以将激光棒分成许多小区域,由于在各个 不同区域上腔内的光子寿命不同,它们的单 程损耗 β_i 亦不同。假定各个区域在泵浦条 件下是独立振荡的,而且每个区域内的纵、横 模跳动对总体输出不起影响。 那么,它总的 激光输出等于各个部分输出之和。可以写 成

$$P_{\Sigma i} = \sum_{i} P_{i} = h \nu_{12} \sum_{i} \beta_{i} I_{i} V_{i} \qquad (4)$$

式中 P₂₄ 为整根棒的输出功率; P_i、 β_i、 I_i和 V_i 分别是第 i 区域的输出功率、单程损耗、 光子流密度和体积; h是普朗克常数; v₁₂ 是终态与亚稳态之间跃迁频率。当泵浦功 率达到 P₁时,单程损耗最小的1区域首先振 荡,输出功率为 P₁。随着泵浦功率的增加, 参加振荡的区域也越来越多,输出功率也越 来越大。因此,我们通常测量泵浦功率与激 光输出功率的关系时,得不到理想的直线关 系,尤其在低泵浦功率下一般总是曲线,直到 棒内所有的区域都参加振荡为止。

按照这一模型也可得出这样的结果,激 光棒的光学不均匀性不一定能在激光的阈值 和效率参数上体现出来,尤其是对不稳定腔 结构的激光器更是如此。 推而可知,放大器 对晶体光学均匀性的要求比振荡器更高。

但对于 Q 调制的情况,不同区域的不同 β,对应于不同的输出脉冲建立时间和不同 的脉冲宽度。如果棒内光学均匀性不太坏, β,之间相差不多,那么,各输出脉冲不能分 辨出来,总的效应是使输出脉冲加宽。如果激 光棒内存在明显的不均匀区域(如小晶面), 各 β,之间相差很远,那么就要出现多脉冲, 实验中也经常碰到这类事。而且,这种多脉 冲很难用改变激光器的参数来得到完全克 服。 当晶体中存在散射颗粒时,这些散射颗 粒可看做是 Fnesnel 数很小的反射面,它具 有很大的衍射损耗。两个散射颗粒分别分布 在棒的两端,它们之间的光路最长,具有最高 的单程增益,因此,最容易自振。振荡输出的 方向,也大致落在工作物质的几何轴线上。至 于散射颗粒和小晶面对模式的影响还有待进 一步研究。

参考文献

- [1] B. Cockayne; J. Crystal Growth, 1968, 3~4 60~70.
- [2] 上海光机所晶体检验组;《激光与红外》,1978,No.7, 41~45.
- [3] 张珊珊等;《激光》, 1979, 6, No. 6, 12~21.
- [4] J. Basterfield, M. J. Prescott; J. Mater. Sci., 1968, 3, No. 1, 33.
- [5] 上海光机所晶体检验组;《激光与红外》,1978, No. 8、9 连载。

He-Ne 激光照射对甲皱微循环的影响

He-Ne 激光照射对病变组织,如粘膜或软组织 的炎症和溃疡有良好的治疗作用;照射穴位时有明 显的调整作用,为探讨与其作用机理有关的一些因 素,故观察 He-Ne 激光照射对甲皱微循环的影响。

我们观察了不同功率即 3、10、20 毫瓦的 He-Ne 激光对甲皱微循环的影响。被观察者共 30 名健康成 人,其中男 11 名,女19 名,年龄在 20~50 岁,其中 有 2 人各为 19 岁和 57 岁。每组 10 人。

在观察前先用肥皂和水清洗观察的部位,即左 手无名指的甲皱部。洗后休息10分钟,然后查照前 的甲皱微循环状态,记录各项指示,再分别用3、10、 20毫瓦的He-Ne激光垂直照射左手无名指甲皱部, 距离1米,照射5分钟,照射后即刻以及在10~30 分钟内观察甲皱微循环状态。

观察结果:不同剂量的 He-Ne 激光照射前后甲 皱毛细血管的管袢排列及其形态和清晰度、充盈度、 血流状态均无明显的变化;其它指标的观察结果、各 组有所差异,具体见下表。

根据初步观察,在甲床部用3毫瓦及10毫瓦的 He-Ne激光照射5分钟后,并不引起甲皱微循环统 计学可靠地改变,但20毫瓦照射5分钟后可引起微 循环血流速度的加快,微血管的长度增加,管袢的 输出、输入端扩张。

(第四军医大学附属一院理疗科、口腔医院内科 陈景藻 王光华 杨瑜林 吴必伦)

剂量	速		度	(秒)	密度(个/毫米)				长度(微米)			输出端(微米)			输入端(微米)				
(毫瓦)	无变化人数	加快人数	加快均值	减慢人数	减慢均值	无变化人数	增加人数	增加均值	减少人数	减少均值	无变化人数	增加人数	增加均值	无变化人数	扩张人数	扩张均值	无变化人数	扩张人数	扩张均值
3	3	2	1.8	5	0.9	6	3	2	1	2	9	1	6.3	9	1	0.16	10	0	0
10	3	4	1.0	3	0.9	5	4	1.3	1	1	6	4	6.3	8	2	0.13	6	4	0.14
20	0	9	0.4	1	0.2	4	6	1.3	0	0	1	9	5.6	0	10	0.14	1	9	0.16

He-Ne 激光照射后甲皱微循环的变化

• 28 •